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SUMMARY: 

Multiple-box solutions are increasingly used in super-long suspension bridges because of their outstanding aeroelastic 

performance. However, the aerodynamic properties of the section can significantly change with the angle of attack, 

making these sections prone to parametric excitation due to large-scale turbulence. A model for buffeting response 

calculation taking into account large angles of attack is discussed in this paper. A suspension bridge crossing the Halsa 

Fjord with a main span of 2000 m is used as a case study to investigate the importance of nonlinearities introduced by 

large-scale turbulence. 
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1. INTRODUCTION 

Since aeroelastic effects were introduced in buffeting response calculations of suspension bridges, 

linear unsteady models have widely been used for self-excited forces. However, it has been seen 

that self-excited forces (either quasi-steady or unsteady) are often sensitive to a variation in the 

angle of attack, which can be induced by large-scale turbulence. How this nonlinearity affects the 

dynamic response and aeroelastic stability of a long-span bridge is still not fully clear. Nonlinear 

aerodynamic force models were developed since the beginning of the ‘90s, aiming to properly 

account for the parametric excitation promoted by turbulence (e.g., Chen and Kareem, 2001; Diana 

et al., 2013; Barni et al., 2021). This effect resulted to be crucial in predicting the dynamic response 

of bridge sectional models subjected to multi-harmonic gusts (Diana et al., 2020). However, the 

few applications on real suspension bridges available in the literature (Chen and Kareem, 2003; 

Ali et al., 2021; Barni et al., 2022) show that turbulence may either stabilise or destabilise the 

bridge response, and highlight the lack of understanding of the phenomenon. 

 

In this paper, the 2D RFA model presented in Barni et al. (2021) is used to evaluate the nonlinear 

buffeting response of the Halsafjorden Bridge, which presents a main span of 2000 m and a twin-

deck girder. Here, the 2D RFA equations are slightly modified to directly obtain some of the model 

parameters from the quasi-steady limits of the aerodynamic derivatives. This work aims to increase 

awareness of the importance of nonlinear effects due to large-scale turbulence and to understand 

how they affect the structural design of long-span bridges. 
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2. MATHEMATICAL MODEL 
As explained in Barni et al. (2021), the 2D RFA model preserves the small vibration assumption 
and assumes that the angle of attack due to wind velocity fluctuations varies slowly compared to 
the bridge motion. Therefore, the time-variant transfer function 𝐆(𝐾, 𝛼̃) between the motion 
vector 𝐫  and the self-excited force vector 𝐪𝑠𝑒  maintains the simple form valid for a linear 
system, but it becomes a function not only of reduced frequency 𝐾 but also turbulence-induced 
slowly-varying angle of attack 𝛼̃(𝑡). 

 

𝐪𝑠𝑒(𝐾, 𝛼̃) = 𝐆(𝐾, 𝛼̃)𝐑(𝐾)  ,   𝐪𝑠𝑒 = [𝑞𝑦 𝑞𝑧 𝑞𝜃]𝑇   ,   𝐑 = ℱ[r] = ℱ[𝑦 𝑧 𝜃]𝑇         (1) 
 

The vector 𝐑 represents the Fourier transform ℱ of the bridge girder motion vector 𝐫 (the self-
excited forces acting on cables and pylons are neglected), where 𝑦, 𝑧  and 𝜃  denote lateral, 
vertical and torsional displacements, respectively. 𝐾 = 𝜔𝐵 𝑉𝑚⁄  is the reduced frequency of 
oscillation, where 𝑉𝑚 is the mean wind velocity, 𝜔 the circular motion frequency, and 𝐵 the 
width of the deck.  
 
The 2D RFA model describes the self-excited forces in the time domain inspired by Roger’s 
rational approximation. Øiseth et al. (2011) noted that for 𝐾 → 0 the quasi-steady limit of the 
imaginary part of Roger’s approximation also depends on the contants of the exponential filters. 
In contrast, with a slight change in the aeroelastic filters, a 2D RFA with a simpler quasi-steady 
limit can be obtained as follows: 
 

𝐆(𝐾, 𝛼̃) =  
1

2
𝜌𝑉𝑚

2 (𝐀1(𝛼̃) + 𝐀2(𝛼̃)𝑖𝐾 + ∑ 𝐀𝑙+2(𝛼̃)
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Since the 2D RFA is a multivariate transfer function, these quasi-steady limits are functions of the 
angle of attack: 
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In this way, the 2D RFA coefficients 𝐀1 and 𝐀2 can be obtained from a simple linear least 
square fit to the quasi-steady limits of the aerodynamic derivatives, entrusting the parameters of 
the aeroelastic filters with the unsteady contribution to self-excited forces. Taking the inverse 
Fourier transform of Eq. (2), considering 𝐀𝑙  and 𝑑𝑙  as frozen-time functions of the angle of 
attack, after some manipulation, one obtains the following expression of the self-excited forces: 
 

𝐪𝑠𝑒(𝑡, 𝛼̃) =  
1
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𝛙̇𝑙 = −𝑑𝑙(𝛼̃)

𝑉𝑚

𝐵
 𝛙𝑙 + 𝐫̇                                                       (5) 

 
Compared to the standard 2D RFA, 𝐀1 and 𝐀2 in Eq. (2) can be forced to respect the quasi-
steady limits. Consequently, the model has less free parameters, which may deteriorate the 
accuracy of the aerodynamic derivative fit, possibly requiring to increase the number of 
exponential filters. On the other hand, this formulation might be helpful in case of a lack of 
experimental data in the low-frequency range, preventing unphysical extrapolations that can lead 
to inaccurate modelling of the low-frequency buffeting contributions, which are essential for the 
lower modes of long-span suspension bridges. 

quasi-steady contribution 
unsteady contribution 



 

 

 

Figure 1: Halsafjorden Bridge section model (1:50 scale) mounted in the wind tunnel 

 
Finally, the self-excited forces in Eq. (4) are implemented in the nonlinear buffeting response 
framework described in Barni et al. (2022), leading to a time-variant state-space model, expressed 
in compact form as: 
 
𝛄̇(𝑡) = 𝛀(𝑡)𝛄(𝑡) + 𝐁𝐪̂𝑒𝑥𝑡(𝑡)                                                    (6) 
 
𝐁 = [𝟎 𝐌̂−1 𝟎]𝑇 ∈ ℝ [2𝑁𝑚𝑜𝑑+3⋅(𝑁−2)∙𝑁𝑥]×𝑁𝑚𝑜𝑑 is the input matrix, 𝛄 ∈ ℝ2∙𝑁𝑚𝑜𝑑+3⋅(𝑁−2)∙ 𝑁𝑥 is 
the state vector, while 𝛀(𝑡) ∈ ℝ[2∙𝑁𝑚𝑜𝑑+3⋅(𝑁−2)∙𝑁𝑥]×[2∙𝑁𝑚𝑜𝑑+3⋅(𝑁−2)∙𝑁𝑥] is the time-variant state 
matrix. 𝐌̂ ∈ ℝ 𝑁𝑚𝑜𝑑×𝑁𝑚𝑜𝑑  indicates the generalized mass matrix, 𝑁𝑚𝑜𝑑  is the considered 
number of vibration modes, and 𝑁𝑥 the number of nodes used to discretize the bridge deck. 

 

 

3. CASE STUDY 
The self-excited force model is applied to evaluate the wind-induced dynamic response of the 
Halsafjorden Bridge, a proposed 2000 m-long suspension bridge. The design has two 300 m-tall 
reinforced concrete towers and a sag-to-length ratio of 8.8. There are 83 hangers on each side of 
the deck spaced 24 m apart. The girder comprises two steel boxes, each 2.5 m high and 16.5 m 
wide, with a inner tip-to-tip distance of 14 m. The main cables are spaced 47 m apart. The outer 
shape of each box is illustrated in Fig. 1. 
 
The 2D RFA model identification requires a set of aerodynamic derivatives for different angles of 
attack. Their measurement through harmonic forced vibrations tests is underway in the wind tunnel 
of the Fluid Mechanics Laboratory at NTNU, Norway. The 1:50 scale twin-deck section model 
(Fig. 1) is 2620 mm long, 740 mm wide and 50 mm high. 
 
The calculation of the nonlinear buffeting response of the bridge also requires that the random 
wind field at the site of the structure is available in the time domain. Time histories of the 
fluctuating wind velocity components are therefore artificially generated. Turbulence intensity and 
integral length scale will be chosen as free parameters to investigate the variation of the nonlinear 
effects produced by turbulence. 



 

 

 
 

Figure 2. Finite-element model of the Halsafjorden Bridge with the shapes of the most important modes. 

 
A finite element model of the Halsafjorden bridge is generated in the software ABAQUS, where 
the first 100 undamped vibration modes were obtained. The modal analysis was performed after 
applying the dead load, accounting for the geometrical stiffness provided by the cables. The 
buffeting calculations will be performed with 20 modes, and the shapes of the most important ones 
for the dynamic response are shown in Fig. 2.  

 

 

4. RESPONSE ANALYSIS AND PROSPECTS 

The nonlinear buffeting response of the bridge is calculated up to the flutter instability onset. The 

influence of turbulence intensity and integral length scale is assessed, as well as the impact of the 

mean wind velocity inclination. The fundamental role of the nonlinearities in the self-excited 

forces is highlighted for the present case study comparing linear and nonlinear buffeting responses. 

It is worth pointing out that the most important feature of the current nonlinear buffeting approach 

is the modulation of external and self-excited forces due to the spatio-temporal fluctuations of the 

angle of attack, which also accounts for the loss of spanwise correlation of the wind field. 
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